Master’s thesis project in Operations Research (Fall 2019)
Briefly, how to apply for an OR Master-Thesis project

The starting dates for a master-thesis in the Fall 2019 are:

• 5/8 2019
• 23/8 2019

A thesis can be either 30 ECTS points, 32.5 ECTS points or 35 ECTS points and can last for 5 or 6 months, depending on the number of ECTS points.

If you want to write an OR master-thesis in the Fall of 2019, you should follow the following 3 steps:

1. **READ THE PROJECT FOLDER** and spend some time thinking about what kind of OR master-thesis you want to write. You can find the folder at:

 http://www.ms.man.dtu.dk/education

2. Write an email, to the professor(s) you want to supervise your thesis writing. The email should clearly state:

 • Name and study number.
 • When the project should start and end, and how many ECTS points.
 • Which project(s) are you interested in. This may be your own project, then it should be explained.
 • What OR courses have you followed (and when)
 • What is your programming experience (specify programming languages and how experienced you are).
 • Attach a printout of your grade-sheet.

The professor will probably call you in for a short interview before agreeing to become your supervisor.
Possible OR supervisors

- Assistant Prof. Charlotte Vilhelmsen, Email: chaan@dtu.dk
 - Core: Health-care planning, tramp ship routing and scheduling, optimisation under uncertainty
 - Other: Vehicle routing, column generation

- Associate Prof. Dario Pacino, Email: darpa@dtu.dk
 - Core: Container Terminal Optimization, Maritime Logistics, Heuristics, Modelling
 - Other: City Logistics, Smart City real-time optimization, Constraint Programming

- Prof. David Pisinger, Email: dapi@dtu.dk
 - Core: Maritime Logistics, Liner Shipping Network Design, Railway Optimization, Packing and Loading, Heuristics, Modelling, Network Optimization
 - Other: Health Care, Airport Optimization, Algorithms

- Assistant Prof. Evelien van der Hurk, Email: evdh@dtu.dk, Expertise area:
 - Core: (public) transport, network-flow problems, column generation, combinatorial optimization, data & statistics
 - Other: vehicle routing, health-care, supply chain management, simulation, forecasting

- Prof. Jesper Larsen, Email: jesla@dtu.dk
 - Core: public transport optimization, health care planning, integer programming
 - Other: vehicle routing, decomposition methods, matheuristics, airport optimization

- Associate Prof. Kourosh Rasmussen, Email: kmra@dtu.dk
 - Core: Using mathematical modelling in real life problem solving in finance, this includes but is not limited to: Household Finance, Asset Allocation, Risk management, Asset liability management

- Associate Prof. Richard Lusby, Email: rmlu@dtu.dk
 - Core: Decomposition Methods, Integer Programming, Passenger Railway Optimization, Robust Planning
 - Other: Matheuristics, Scheduling, Staff Rostering, Transportation

- Prof Stefan Røpke, Email: ropke@dtu.dk
 - Core: Vehicle routing, integer programming, decomposition methods, meta-heuristics, maritime transport, public transport
 - Other: Collaborative game theory, stochastic optimization, Artificial Intelligence

- Assistant Prof. Nina Lange, Email: nilan@dtu.dk, Expertise area:
– Other: Portfolio Theory, Fixed Income Markets

• Associate Prof. Thomas Stidsen, Email: thst@dtu.dk, Expertise area:
 – Core: Educational timetabling, health-care planning, multi-objective optimization, man-
 power planning, integer programming
 – Other: financial optimization, energy modelling and optimization
Welcome

In this folder the Division of Management Science presents a wide range of interesting master’s thesis projects. Every year we offer many different projects and at the end of each semester we update this folder and publish it so that you may see what we offer.

As the contents of this folder will show you, we offer a wide variety of different projects. A wide network of industrial contacts enable us to offer you projects in cooperation with companies with many different facets, or you can choose a project with a strong theoretical background.

The typically requirement for starting a master’s project in Management Science is that you have followed an advanced OR/FE course (beyond an introductory course covering linear programming etc.).

At the Technical University of Denmark research in Management Science is done at the department of Management Engineering. Here the division of Management Science consists of almost 20 researchers, Ph.D. students and research assistants. Further information about the division of Management Science can be found on our homepage at www.man.dtu.dk. DTU Management Engineering is proud to be member of the Danish Operations Research Society – the largest OR network in Scandinavia.

Apart from the project proposals that are listed in this folder, you are always welcome to contact us if you have a project idea of your own. This folder may serve as a source of inspiration. Your main supervisor must be a permanent staff member, which at present means, Charlotte Vilhelmersen, Jesper Larsen, Evelien van der Hurk, Richard Lusby, David Pisinger, Kourosh Rasmussen, Stefan Røpke, Nina Lange, Dario Pacino and Thomas Stidsen. In addition our Ph.D. students and Post Docs often take part in the supervision with their fresh ideas and hands on knowledge.

A number of office spaces and computers are available for master students in Management Science. Requests can be made to your supervisor.

Some of the projects in this folder can also be used as the basis for bachelor projects. If you are interested, ask the designated supervisor of the project.
Projects with Kourosh Rasmussen as supervisor
Personalized Life Cycle Pension Products

1. SUPERVISORS: Kourosh Marjani Rasmussen (DTU MAN)

3. PROJECT BACKGROUND: The decision of how much to save for future consumption and the risk taking structure of the asset allocation strategy should be tied to such personal decisions as to how much to work, how much to consume, when to retire, how to insure the household against unpredictable events, etc. These ideas are, per se, not new, but personalized pension products are nowhere to be found. Concrete implementations of this idea, together with life coaching type of advice will indeed be a much needed innovation in the pension industry.

4. PROJECT ASSIGNMENT: In this project we will experiment with life-cycle investment products where risk taking should not only consider the actual value of a person’s portfolio but also the yet un-earned expected life income. This will mean more risk taking when the person is young. As part of this project the students should develop new risk scoring techniques for the individual. They should also compare performance of the new products with most common pension products that are around today. The students should finally test for responsiveness of such strategies to shocks such as loss of income and unfavorable market developments.

5. PREREQUISITES: Core courses in Financial Engineering such as 42104 Introduction to Financial Engineering and 42123 Optimization in Finance.

6. GROUP SIZE: 1 or 2 persons.

EXCHANGE TRADED FUNDS (ETF)

1. SUPERVISORS: Kourosh Marjani Rasmussen (DTU MAN)

3. PROJECT BACKGROUND: There is a growing body of empirical evidence that active managed mutual funds are not able to beat the index (which is nothing else than the weighted return of the single stocks) systematically over a prolonged period of time. One possible explanation for this fact is that financial markets are highly efficient, i.e. that market prices reflect nearly all information available at a certain point in time. Another explanation might be asymmetric information, i.e. that mutual fund managers are exploited by “insiders”. Therefore, in the last years the demand from institutional and private investors for so-called index trackers is growing.

4. PROJECT ASSIGNMENT: There are different interesting topics to be addressed in this project. One core question is how to minimize the tracking error while taking transaction costs into consideration. How do products with different tracking techniques perform? What are the pros and cons? Another related topic is the theoretical explanation why (independent of transaction costs) fund managers might perform worse than index trackers. Interested
students can contact the supervisor to hear more about concrete project possibilities. The students are very welcome to come up with their own suggestions as to specific problem descriptions within the framework of the given project area.

6. GROUP SIZE: 1 or 2 persons.

FINANCIAL ADVICE FOR HOUSEHOLD

1. SUPERVISORS: Kourosh Marjani Rasmussen

3. PROJECT BACKGROUND: The complexity of the financial decisions a household has to take has grown considerably during recent years with the steady introduction of new financial products such as different types of loans and pension schemes. On the one hand this introduces new financing and investment opportunities for the household. On the other hand it imposes financial risks on the household that need to be managed in an economically reasonable manner. The individual households are in need of personal financial advice to make the right decision due to the course of their lives in order to meet their financial objectives in a sustainable manner. The governments are interested that the households make informed financial decisions in order to minimize the financial risks that will eventually put a burden on the existing welfare systems. Finally financial institutions should be interested in giving good advice to their clients for competition reasons (customer goodwill) and for satisfying regulatory requirements. The cost of old fashioned face to face financial advice makes it unrealistic to provide thorough and holistic (including the households complete economy over a lifetime) advice for all clients. Innovative and affordable net-based solutions are needed to educate the household in their financial decision and help them monitor and manage the performance of these decisions. This should be done in a way that appeals to the household, encourages them to actually use the solutions.

4. PROJECT ASSIGNMENT: There are several topics to be addressed in this project. Interested students can contact the supervisor to hear more about concrete project possibilities. The students are very welcome to come up with their own suggestions as to specific problem descriptions within the framework of the given project area.

6. **GROUP SIZE:** 1 or 2 persons.

ROBUST INVESTMENTS IN THE FINANCIAL MARKETS

1. **SUPERVISOR:** Kourosh Marjani Rasmussen

3. **PROJECT BACKGROUND:** About 84 percent of U.S. stock funds that are actively managed, rather than passively tracking an index, underperformed, in 2011, when compared to the Standard & Poor's indexes representing the market segment the funds invest in, according to S&P’s 10th annual fund performance scorecard.

 Over three years, from 2009 through 2011, about 56 percent of stock funds underperformed relative to S&P benchmarks. Over five years, 61 percent underperformed. Going back 10 years, the average percentage of funds underperforming has been about 57 percent.

 More often than not, a majority of funds underperform because returns are reduced by investment fees to cover fund operations, including costs to pay managers and analysts who support them. Those fees are difficult to offset, even if a manager is a strong stock-picker. At actively managed funds, expense ratios typically range from 0.5 percent to 2 percent. That’s the amount investors pay each year, expressed as a percentage of a fund’s assets.

 Nevertheless the majority of the average investors savings today end in such stock funds or more broad mutual funds.

 Index funds (such as ETFs) charge lower fees – as little as 0.06 percent at some funds – because they don’t rely on professionals to pick stocks. Index funds are designed to track an index, delivering investment returns that are slightly smaller than the benchmark to account for fees covering operations.

 The purpose of this project is to identify robust investment strategies for different categories of investors, ranging from people investing part of their salaries for their retirements to the private banking clients, high net worth individuals and finally corporate investors.

4. **PROJECT ASSIGNMENT:** There are several topics to be addressed in this project. Interested students can contact the supervisor to hear more about concrete project possibilities. The students are very welcome to come up with their own suggestions as to specific problem descriptions within the framework of the given project area.

6. **GROUP SIZE:** 1 or 2 persons.

Projects with Charlotte Vilhelmsen as supervisor
TRAMP SHIPPING WITH VOYAGE SEPARATION REQUIREMENTS

1. SUPERVISOR: Charlotte Vilhelmsen

3. PROJECT BACKGROUND: Tramp ships operate much like taxies following the available demand as opposed to liner ships that operate more like busses on a fixed route network according to a published timetable. Tramp operators can determine some of their demand in advance by entering into long term contracts and then try to maximise profits from optional voyages found in the spot market. Routing and scheduling a tramp fleet to best utilise fleet capacity is therefore an ongoing and complicated problem comprising simultaneous decisions on which cargoes from the spot market to transport, which ship each cargo should be transported on, and which order and timing the given cargoes for a given ship must be transported in. Here we add further complexity to the routing and scheduling problem by incorporating voyage separation requirements that enforce a minimum time spread between some voyages. The incorporation of these separation requirements helps balance the conflicting objectives of maximising profit for the tramp operator and minimising inventory costs for the charterer, since these costs increase if similar voyages are not performed with some separation in time.

4. PROJECT ASSIGNMENT: Develop, implement and test a solution method that can route and schedule a fleet of tramp ships while adhering to given voyage separation requirements.

5. PREREQUISITES: Integer programming course and good programming skills are required.

DAILY PLANNING OF OPERATING ROOMS AT RIGSHOSPITALET

1. SUPERVISOR: Charlotte Vilhelmsen

3. PROJECT BACKGROUND: At any major hospital the scheduling of operating rooms is a critical activity. Not only is surgery a major cost driver but for staff it is important to be able to deliver the best possible care. There are several planning stages but the most important one is the daily planning. At Rigshospitalet the surgery plan for the next day is produced at 2pm. After this plan has been determined patients can be prepared for the upcoming operations. Poor planning lead to staff doing overtime and surgery cancellations although the patient is ready for the operation.

4. PROJECT ASSIGNMENT: This project is concerned with investigating the possibilities of delivering high-quality decision support using integer programming, stochastic programming and mathematical optimization. The input to the planning process are the planned operations for the next day. They differ in complexity and duration. In addition, special equipment not available in every operating room may limit the possibilities. Finally, one also has to set aside resources for emergency operations and take into account the stochasticity of the duration of each surgery. The project should contain all important parameters and produce a surgery plan for the daily problem.
5. **PREREQUISITES:** Integer Programming, knowledge about stochastic programming and good programming skills

6. **GROUP SIZE:** 1-2 students

7. **CHARACTERISTICS OF THE ASSIGNMENT:** Implementation of solution method for stochastic programming model
Projects with Dario Pacino as supervisor
SHIP LOADING OPTIMIZATION

1. **SUPERVISOR:** Dario Pacino

2. **PROJECT GROUP:**

3. **PROJECT BACKGROUND:** Container vessels are known to be one of the most CO₂ efficient ways to transport goods. Even though the emissions per ton/mile are minimal the total amount of produced emissions is huge. Since the economic crisis of 2009, the carriers have adopted a sailing policy called “slow steaming”. With this policy, vessels are meant to sail at slow speeds thus reducing emissions, bunker consumption and costs. Such a strategy can make economic sense only if the extra transport times do not affect the customers. This can be achieved by reducing the ship’s time at port.

4. **PROJECT ASSIGNMENT:** The aim of the project is to exploit the flexibility that type based stowage plans can offer when optimizing port operations. Your task will be to develop a solution method for the optimization of the ship loading operations. This will include the assignment of containers to the vessel and the scheduling of the cranes and terminal vehicles.

5. **PREREQUISITES:** Operations Research methods, both in terms of mathematical programming and heuristic implementation.

6. **GROUP SIZE:** 1-2

7. **CHARACTERISTICS OF THE ASSIGNMENT:**

8. **REMARKS:** Limited available academic work. Chance of publication.

CONTAINER TERMINAL OPTIMIZATION

1. **SUPERVISOR:** Dario Pacino

2. **PROJECT GROUP:**

3. **PROJECT BACKGROUND:** Collecting and sharing data is the focus of nowadays maritime companies. As digitization become more and more a reality, the need to make use of the available data is increasing. This need has been recognised not only by the maritime industry, but also from data providers and data sharing platforms. PORTCHAIN is a Danish start-up that focuses on data sharing and data processing between container carriers and terminals. They are interested in identifying synergies between carriers and terminals in order to improve efficiency for both parties.

4. **PROJECT ASSIGNMENT:** The aim of this project is, in collaboration with PORTCHAIN, to identify important opportunities in the integrated planning between container carrier and terminal. The project will focus on seaside operations and in particular in the interplay between stowage planning and quay crane scheduling.

5. **PREREQUISITES:** Operations Research methods, both in terms of mathematical programming and heuristic implementation.

6. **GROUP SIZE:** 1-2
7. CHARACTERISTICS OF THE ASSIGNMENT:

8. REMARKS:

OPTIMIZATION at PostNord

1. SUPERVISOR: Dario Pacino

2. PROJECT GROUP:

3. PROJECT BACKGROUND: PostNord has a renewed interest in the optimisation of their operations and is willing to open its doors to bright students. Their interest is broad and spans from strategical operations such as network design, to operational issues like vehicle maintenance planning.

4. PROJECT ASSIGNMENT: PostNord is interested in the following topics.

 Network design:
 • Balance the use of internal transport vehicles and external services
 • Re-positioning of empty cargo containers between Jutland and Zealand
 • Evaluate the possibility of replacing cargo containers with pallets

 Vehicle routing & planning:
 • Combine collection and distribution routing
 • Robust vehicle routing based on fluctuating customer demands
 • Evaluate the potential use of electric vehicles

 Vehicle depot:
 • Scheduling of maintenance operations

5. PREREQUISITES: Operations Research methods, both in terms of mathematical programming and heuristic implementation.

6. GROUP SIZE: 1-2

7. CHARACTERISTICS OF THE ASSIGNMENT:

8. REMARKS:
Projects with Evelien van der Hurk as supervisor
1. **SUPERVISOR:** Evelien van der Hurk

2. **PROJECT BACKGROUND:** An alternative service needs to be provided during track closures that result e.g. from necessary maintenance. Generally, the train service will be replaced by busses. However, replacing the existing trainline directly with busses may be neither optimal for the passengers nor for the operator. Alternative services such as express lines and busses connecting to alternative train lines may together provide better service at lower costs than replacing the closed track service directly with busses.

3. **PROJECT ASSIGNMENT:** In this project you will optimize the bus replacement service for a closure. The project could focus on:
 - The optimization model for the selection of busses
 - The generation of alternative bus lines
 - The (detailed) assessment of the passenger service of a selected bus-plan

 This master thesis project is based on a real case study of a closure on the DSB S-tog; and good outcomes may result in interest of DSB to include the developed procedures, outcomes or (optimization) methods in practice.

4. **PREREQUISITES:**
 - Programming skills (e.g. Julia lang, Python, Java, ...)
 - Introduction to Operations Research: as well as a second course (equivalent to) (42113) Networks or Integer Programming.
 - Knowledge about column generation and Optimization in Public Transport (42881) would be an advantage.

5. **GROUP SIZE:** 1-2

3. PROJECT ASSIGNMENT: The project focuses on developing decision support tools for lineplanning at DSB, and could involve some small case studies. The thesis could for instance focus on:

• including realistic passenger route choice (The passenger service depends on the routes the passengers choose in the offered lineset. As passengers can choose a route themselves, and their interest may conflict with the operators best interest in case of limited capacities, including realistic passenger route choice is a challenging task.)

• integration of lineplanning with timetabling (not only how often, but also when should the trains run? Does integration of lineplanning and timetabling lead to different outcomes than solving the problems sequentially?)

• generation of linepools (which candidate lines could one consider?)

• improving scalability of existing models (Line planning problems, especially including dynamic route choice of passengers, are challenging problems to solve. In this task you would work on algorithms and methods to increase the speed of solving these algorithms.)

4. PREREQUISITES:
 • Programming skills (e.g. Julia lang, Python, Java, ...)
 • Introduction to Operations Research: as well as a second course (equivalent to) (42113) Networks or Integer Programming.
 • Knowledge about column generation and Optimization in Public Transport (42881) would be an advantage.

5. GROUP SIZE: 1-2

CAPACITY UTILIZATION AT COPENHAGEN CENTRAL STATION

1. SUPERVISOR: David Pisinger, Richard Lusby, Evelien van der Hurk

2. PROJECT BACKGROUND: Copenhagen Central is the main hub in the Øresund region, and the opening of the new high-speed track to Ringsted, establishment of the metro city ring, and possibly new connections via Fehmern will strengthen the position. Also the new signaling system will make it possible to increase frequency of trains at various legs adding pressure on the infrastructure. Copenhagen Central is located in central Copenhagen so expanding platforms or tracks is not a viable option. This makes it necessary to develop decision support tools that can provide a better capacity utilization, help identify bottlenecks and assist future investments.
3. PROJECT ASSIGNMENT: The aim of the project is to assess the capacity utilization of Copenhagen central station by integrating/ coordinating three different optimization problems. In particular, the project will address the platform assignment problem, how to route time-tabled train services through the station, and how to plan the necessary shunting movements for any required depot activities. All problems are highly interdependent and must be solved simultaneously in order to determine the capacity utilization of the station given an input timetable, [5, 6]. The focus will be on a microscopic level, where the exact location of the train units must be monitored at any given time. In determining the capacity utilization of the station consideration must be given to the objectives of the routing problems (i.e. what level of robustness should be included), see e.g. [1, 2], and some coordination with the timetabling is envisaged, [3]. A poor quality timetable might be inherently restrictive from a capacity utilization perspective. The project could address tactical or operational level variants of the problem. In an operational setting it may be worthwhile to dynamically reorder, reroute, or re-time trains to obtain a better utilization of the available capacity (see e.g. [4]).

4. PREREQUISITES: • Programming skills (e.g. Julia lang, Python, Java, ...)
 • Introduction to Operations Research: as well as a second course (equivalent to) (42113) Networks or Integer Programming.
 • Knowledge about column generation and Optimization in Public Transport (42881) would be an advantage.

5. GROUP SIZE: 1-2

CREW ROSTERING AT DSB

1. SUPERVISOR: Evelien van der Hurk, Richard Lusby
2. PROJECT BACKGROUND: The crew costs form a major part of operational costs for a rail operator. Reducing crew costs by creating more efficient rosters could be a huge benefit for the operator. At the same time, it is crucial that the resulting rosters match the preferences of staff.

Generally, the scheduling of crew is split in two separate, consecutive, phases: the creation of duties, and the assignment of duties to individual rosters of crew members. Your task would be to aim to improve the rosters, by either improving the rostering tool, or by looking at the integration between rostering and duty-generation.

The project will be in collaboration with DSB, the largest passenger railway operator in Denmark.

3. PROJECT ASSIGNMENT: The difficulty of this problem is that for both the duty set and the set of rosters a huge amount of feasible options exist. Hence one would likely solve this problem using column generation and/or heuristics.

There exist options to work with the DSB on real data for this problem. Strong programming skills are a requirement.

4. PREREQUISITES: • Programming skills (e.g. Julia lang, Python, Java, ...)
 • Introduction to Operations Research: as well as a second course (equivalent to) (42113) Networks or Integer Programming.
 • Knowledge about column generation and Optimization in Public Transport (42881) would be an advantage.

5. GROUP SIZE: 1-2

ON DEMAND PUBLIC TRANSPORT PLANNING

1. SUPERVISOR: Evelien van der Hurk

2. PROJECT GROUP: Konsentra, Norwegian on-demand public transport operator in the Oslo area

3. PROJECT BACKGROUND: Konsentra coordinates, plans and provides public transport for schoolkids as well as anyone with special mobility needs. They operate around 200 minibuses and collaborate with several taxi companies to provide around 1.2 million journeys per year. This project is about creating better schedules for their transport.

At Konsentra they care about quality, timeliness, and greeting the customer with a smile! They create a new schedule every day to serve their many customers. Some of these are children that cannot use regular public transport to get to their schools, because they live in remote areas. Others are people with special needs (e.g. wheelchair transportation, autistic, ...), that therefore require special public transportation. The target of Konsentra is to provide high level service efficiently: therefore they aim to include as much ride sharing, using their mini-busses, as possible.

Due to the special nature of their clients, there are also special constraints on the travel demand of their customers. For example, some passengers may really need regularity in their schedule and need to always be picked up by the same driver. Others require a companion
when traveling, who needs to be picked up before them, and dropped off after them. Some passengers have a specification from their doctor stating they need to travel alone. Also, the need for wheelchair transportation limits the type of vehicles that can be used. All passengers have a constraint on the maximum time between pick-up and required time of arrival at their destination, which depends on their age.

Currently, the making of a schedule is a combined automatic scheduler and manual effort.

4. PROJECT ASSIGNMENT: In this assignment you will develop a tool for generating a daily schedule for Konsentra. Their current automatic tool reaches an average of 2.6 passengers per trip – while minibus can take up to 16 passengers! Your objective is to beat the 2.6 – and maybe even beat their manual solutions that reach between 3.2 and 3.4 passengers per trip!

In this project the student should develop a solution method for optimizing a the daily on demand public transport schedule. To beat the above target, you could focus on:

- Developing an advanced solution method
- Investigate the benefits of a different operation strategy, such as:
 - Re-assignment of the 4 operating zones
 - Re-defining the minimum travel time from a fixed time for all, to a budget in addition of the minimal travel time
 - Your own suggestion!

5. PREREQUISITES:

- Programming skills (e.g. Julia lang, Python, Java, ...)
- Introduction to Operations Research: as well as a second course (equivalent to) (42113) Networks or Integer Programming.
- Knowledge about (meta/math) heuristics, decomposition methods, and/or column generation would be an advantage – as well as knowledge on vehicle routing.

6. GROUP SIZE: 1-2

7. CHARACTERISTICS OF THE ASSIGNMENT: optimization, public transport, vehicle routing

8. REMARKS:

INTEGRATED TIMETABLING

1. SUPERVISOR: Richard Lusby, Evelien van der Hurk

2. PROJECT BACKGROUND: Timetabling is a critical problem for railway operators, arising at each of the strategic, tactical, and operational planning levels. It involves determining the departure and arrival time of each of the planned train services in the schedule (on a macroscopic level), and the exact claim and release times of atomic infrastructure components (i.e. switches) on a microscopic level. Its importance is further highlighted by the fact that it directly influences the quality of the rolling stock and crew schedules that can be obtained. Several competing objectives are typically considered (robustness, operational cost, and passenger travel time) and the problem usually comes in two forms, periodic and aperiodic.
3. PROJECT ASSIGNMENT: This project will focus on a multiobjective approach to time-
tabling (applicable at all planning levels) and assess the impact of integration with the sub-
sequent planning levels of rolling stock and crew planning. In particular, to what extent
does the timetable impact the quality of the rolling stock and crew schedules? Railway ti-
metabling is an extremely well studied problem; however, not as much has been done with
respect to integration with subsequent planning levels. Timetable and rolling stock integra-
tion is described in [2]. On a strategic and tactical level the focus is on generating a robust
timetable from a passenger perspective (which is feasible on the microscopic level) mini-
mizing operational cost. On an operational level the focus would be on re-timetabling (i.e.
in the presence of disruptions), see e.g. [3], deciding which services should be cancelled
and which services should be re-timed. Naturally, this would also have an integration angle.
The final timetable must be able to be assigned rolling stock and crew. An approach that
coordinates all three problems has been presented in [1]; however, this procedure appears to
lack microscopic feasibility checking and mainly consists of simple feedback loops.

4. PREREQUISITES:
 • Programming skills (e.g. Julia lang, Python, Java, ...)
 • Introduction to Operations Research: as well as a second course (equivalent to) (42113)
 Networks or Integer Programming.
 • Knowledge about (meta/math) heuristics, decomposition methods, and/or column ge-
 neration would be an advantage – as well as knowledge on vehicle routing.

5. GROUP SIZE: 1-2

 [2] Luis Cadarso and Angel Marin. Integration of timetable planning and rolling stock

 [3] Lucas P. Veelenturf, Martin Philip Kidd, Valentina Cacchiani, Leo G. Kroon, and
 Paolo Toth. A railway timetable rescheduling approach for handling large-scale dis-
Projects with Jesper Larsen as supervisor
ROUTING OF CARETAKES WITH JOINT VISITS

1. SUPERVISOR: Jesper Larsen

3. PROJECT BACKGROUND: In Denmark the principle of letting the elderly stay in their home for as long as possible is an important part of the social policy. Each municipality has a staff of caretakers that visits the elderly performing a number of different tasks.

Each visit needs to be started within a given time window, and has a pre-specified service time. Each caretaker is available in a given time window defining the shift of the caretaker.

The planning process consists of assigning visits to caretakers and subsequently build routes for the caretakers. Among the visits are some visits where more than one caretaker needs to be present to perform the task. Here the service that needs to be performed for the citizen cannot start before all caretakers are present.

4. PROJECT ASSIGNMENT: The aim of the project is to investigate the possibilities to come up with an integrated approach for solving the home care routing problem. Special attention should be put on solution time and the robustness of the plans in order to avoid re-planning as far as possible. The solution approach can be optimal or near-optimal.

5. PREREQUISITES: Introduction to Operations Research, courses equivalent to (42113) Networks and Integer Programming and (42132) Large Scale Optimization using decomposition. Good programming skills.

SCHEDULING TRAIN CLEANING

1. PROJECT SUPERVISOR: Jesper Larsen, Richard Lusby

2. PROJECT GROUP: NN (DSB)

3. PROJECT BACKGROUND: An important part of good passenger service is to maintain a nice and clean environment for the passengers. In the trains that is the responsibility of the operator, that is, DSB. Although the cleaning is done by an external contractor the schedules for the cleaning is made by DSB and then forwarded to the contractor. At DSB there are three different types of cleaning based on how much time is available and how thorough the cleaning should be. Cleaning can only be performed at designated stations on the route. The process of developing the schedules for the cleaning is currently being done manually with no or very little system support.

4. ASSIGNMENT: The aim of this thesis is to develop, implement and present a method for automatically determining the cleaning schedules. The schedules must comply with the rules and regulations of DSB and must be able to minimize cost and/or other appropriate measures. The project also allows to develop new ideas for producing the schedule and compare to real-life schedules from DSB.
5. QUALIFICATIONS: At least Introduction to Operations Research and Integer Programming. Programming experience is an advantage.

6. GROUP SIZE: 1-2 persons

PATIENT ADMISSION SCHEDULING

1. SUPERVISOR: Jesper Larsen

3. PROJECT BACKGROUND: Newly admitted patients need a free bed that satisfies both the personal preferences (single, twin room, or a ward) as well as the medical needs of the patient located in the department that is specialized in treating the clinical picture. The assignment of patients to beds is often carried out by a central admission office that individually contacts every appropriate department a few days before the effective admission of the patient. Other hospitals organize the admission of patients without a central admission office, leaving admission responsibility with the departments. In the latter case, a lack of overview of the departments may result in under occupancy. Patients may be refused in one department while free suitable beds are available in another department. Generally speaking patients can be divided in two groups: inpatients and outpatients. Inpatients spend several days or nights in a hospital, whereas the admission of outpatients is expressed in hours. This project will concentrate inpatients only. Inpatients can further be divided in three groups: emergency, elective and admitted patients. Emergency patients are hard to schedule, since by definition they have no appointment with the physician and arrive at random. Elective inpatients are waiting for an admission date. This means that an admission office can determine when to admit them. Such patients allow the hospital to improve its occupancy rate as they can be assigned to the most appropriate period. In this paper however, we simplify the problem by assuming that the patients’ admission dates are known before. The physician who advised the patient to be admitted to the hospital, diagnosed the patient’s disease which is associated with a default (average) length-of-stay.

4. PROJECT ASSIGNMENT: Present methods for solving the patient admission scheduling problem all rely on metaheuristics which often does not exploit problem structure very good. This project should devise and implement a solution approach based on mathematical programming. It is forseen that the initial parts of the project will consist in developing mathematical models and the second part of implementing and testing the most promissing model.

5. PREREQUISITES: (42101) Introduction to Operations Research, and a background at least equivalent to (42114) Integer Programming is necessary. Knowledge about column generation would be an advantage. Good programming skills.

6. GROUP SIZE: 1-2 students

1. SUPERVISOR: Jesper Larsen

2. PROJECT GROUP: Troels Range (Sydvestjysk Hospital)

3. PROJECT BACKGROUND: In the Region of Southern Denmark specially educated staff visits citizens that cannot come to the hospital for taking blood samples in their own home. When a blood sample has been taken it has to be back to the hospital within a certain time in order ensure it can be used for diagnosis. As new visits appear in real-time routes cannot be calculated statically. Instead they can potentially change during the day.

4. PROJECT ASSIGNMENT: Given data from Sydvestjysk Hospital the assignment of the project is to make a solution approach for the problem that can encompass the dynamic nature of the problem thereby potentially recompute the solution every time new visits appear in the system.

5. PREREQUISITES: (42101) Introduction to Operations Research, and a background at least equivalent to (42114) Integer Programming is necessary. Knowledge about column generation would be an advantage. Good programming skills.

1. SUPERVISOR: Jesper Larsen

2. PROJECT GROUP: Kristian Hauge (AMCS)

3. PROJECT BACKGROUND: In this route planning problem a number of fixed customers is serviced at regular intervals. Each customer has a stock of goods (e.g. petrol) that they gradually consume over time. It is necessary to refill the stock of the customers before they run out. However, the time at which the customers are refilled will determine both the size of the order that should be delivered as well as the expected interval before another delivery is needed.

The biggest challenge in this type of planning scenario is not solving the route planning problems themselves, but determining the right day for visiting the customers.

4. PROJECT ASSIGNMENT: Given real customer data including known stock levels and consumption, the task is to design and test various strategies for when customers should be visited.

5. PREREQUISITES: (42101) Introduction to Operations Research, and a background at least equivalent to (42114) Integer Programming is necessary. Knowledge about column generation would be an advantage. Good programming skills.

8. REMARKS: AMCS is a software company specialising in fleet management products. I have other similar optimisation problems in the area of routing and scheduling from AMCS. I can send you the other suggested projects if you contact me.
Projects with Richard Lusby as supervisor

THE CLASSIFICATION YARD BLOCK-TO-TRACK ASSIGNMENT PROBLEM

1. SUPERVISOR: Richard Lusby

3. PROJECT BACKGROUND: Classification yards act as large consolidation points in the freight rail industry. The handling of rail cars at such yards is of paramount importance to their efficiency. At a classification yard arriving (or so-called inbound) trains are disassembled and re-grouped/classified into groups of rail cars sharing the same destination. These groups of rail cars are then combined to form new outbound trains, which subsequently leave the yard. How best to sort the rail cars such that the average dwell time in the yard for all rail cars is minimized is an interesting research question and not trivial to answer. A classification yard consists of a number of parallel tracks (each with a certain length) on which cars can be sorted. Which track to assign each rail car is an important subproblem in the handling of rail cars and is the focus of this project.

4. PROJECT ASSIGNMENT: For this project the student(s) will be required to propose mathematical model(s) for the the block-to-track assignment problem, discussing any advantages and/or disadvantages. In addition, implementation of an exact algorithm or a metaheuristic will be required to validate the model.

7. CHARACTERISTICS OF THE ASSIGNMENT: Model analysis, meta-heuristic implementation. Good programming skills (C++, Java) will be an advantage.

8. REMARKS:

THE CARDINALITY CONSTRAINED SHIFT DESIGN PROBLEM WITH MEAL BREAKS

1. SUPERVISOR: Richard Lusby

2. PROJECT GROUP:

3. PROJECT BACKGROUND: The Shift Design Problem is an important optimization problem which arises when scheduling personnel in industries that require continuous operation. Based on the forecast, required staffing levels for a set of time periods, a set of shift types that best covers the demand must be determined. In order to make sure a solution to this problem is easily managed in practice, the number of shift types one is allowed to use is bounded by some upper limit (hence cardinality constrained, and typically the chosen set must be the same on each day of the planning horizon. This is despite the fact that the demand scenarios for each day are not identical. Finally, it is important to identify when meal breaks should be provided to staff members within each of the shift types as this also impacts the quality of the final solution.
4. PROJECT ASSIGNMENT: For this project the student(s) will be required to formulate the cardinality constrained shift design problem with meal break selection as an optimization problem and implement a solution algorithm (exact and/or heuristic) to solve it.

6. GROUP SIZE: 1-2

7. CHARACTERISTICS OF THE ASSIGNMENT: Model analysis, meta-heuristic implementation. Good programming skills (C++, Java) will be an advantage

8. REMARKS:

HEURISTIC APPROACHES TO THE CREW PAIRING PROBLEM

1. SUPERVISOR: Richard Lusby

2. PROJECT GROUP:

3. PROJECT BACKGROUND: The crew pairing problem is one of the most widely studied problems in the field of Operations Research. Arising in the airline industry, it involves determining a set of cost minimal sequences of flights, or so-called pairings, which cover the planned flight schedule and which can be sequential assigned to flight crew. Nowadays, solutions to this problem are found by large-scale integer programming formulations, which are solved using sophisticated decomposition techniques. In this project we would like to investigate the application of metaheuristics to this problem. Ideally, such approaches would provide solutions of similar quality, much faster. This could be attractive for small/mid sized airline companies who do not have a business case for expensive state-of-the-art commercial solvers. Robustness aspects that preserve feasibility of the solution in the presence of disruptions will also be considered.

4. PROJECT ASSIGNMENT: Develop a metaheuristic approach for solving the crew pairing problem for a medium sized airline company. Emphasis should be given to the quality of the solution, the run time required, and its robustness.

5. PREREQUISITES: 42401, 42113/42114, 42112/42116, Good programming skills

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Algorithm design, airline application, literature study

8. REMARKS:

CYCLIC ROSTER CONSTRUCTION

1. SUPERVISOR: Jesper Larsen and Richard Lusby
3. PROJECT BACKGROUND: For large companies efficiently rostering the employees is an extremely important, yet highly challenging problem. The final rosters must usually obey a large set of union rules, consider employee satisfaction, be cyclic in nature, and distribute the workload as evenly as possible across the employees. Staff salaries often constitute the single most expensive resource companies face, and hence optimizing staff utilization can be of significant benefit.

4. PROJECT ASSIGNMENT: This project considers cyclic roster construction for airport security staff. The student must devise an optimization based algorithm for designing rosters (with a cyclicity of 4 weeks) that teams of security officers will work. It is anticipated that the student(s) will devise a column generation procedure to solve this.

5. PREREQUISITES: 42114, 42136 or 42137, good programming skills

6. GROUP SIZE: 1-2 Students

7. CHARACTERISTICS OF THE ASSIGNMENT: Integer Programming, Column Generation, Staff Rostering, Cyclic Rostering

POWER PLANT PREVENTIVE MAINTENANCE SCHEDULING

1. SUPERVISOR: Richard Lusby

3. PROJECT BACKGROUND: Scheduling power plant preventive maintenance is an important problem for any power company. This problem entails determining when each power plant should be taken “offline” to perform the necessary safety inspections and/or running maintenance. Power plants are essential components of the electricity network and any failures have the potential to be very disruptive. Since power plants cannot produce when taken offline, it is essential that their respective maintenance periods are coordinated as efficiently as possible. Furthermore, the demand for power is stochastic in nature and one must minimize the cost associated with maintaining the power plants while satisfying the demand in a variety of scenarios.

4. PROJECT ASSIGNMENT: The aim of this project is to develop an optimization tool for determining this preventive maintenance scheduling problem. It is expected that the student will implement an exact decomposition based algorithm, or an advanced metaheuristic. Data for this problem is available and the solutions obtained with the developed methodology will be compared to the known benchmarks.

5. PREREQUISITES: 42114, 42136 or 42137, good programming skills

6. GROUP SIZE: 1-2 Students

7. CHARACTERISTICS OF THE ASSIGNMENT: Integer Programming, Decomposition, Maintenance, Scheduling

PHARMACEUTICAL MANUFACTURING
1. SUPERVISOR: Richard Lusby

2. PROJECT GROUP:

3. PROJECT BACKGROUND: The production of a pharmaceutical product can be a complicated process. Typically, it is synthesized in batches from quantities of raw material in such a way that the greatest quantity of the final product, having a prespecified potency, can be manufactured. Complicating issues include the deterioration of the quality of the raw material over time (which ultimately results in a final product with a lower potency), target batch sizes for the final product, and mixing restrictions on the input raw material. Decisions on which raw material to mix, and when and where to produce the final products must be made. The unnecessary wastage of raw material should be avoided; however, supplementary production can be possible in some cases.

4. PROJECT ASSIGNMENT: Devise a mathematical programming model, along with a solution method, to optimize the manufacturing process of a pharmaceutical product. Typically, the objective of the problem is to maximize the quantity of the final product produced; however, here consideration will also be given to the sensitivity of the solution to changes in input parameters. In addition, an extensive review of Operations Research methods applied to similar problems must be completed. For the solution method, exact and/or heuristic methods may be developed.

5. PREREQUISITES: 42114/42115, 42112/42116/421374, good programming skills

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Modelling, algorithm design, literature study

8. REMARKS:

APPLICATIONS OF MACHINE LEARNING IN SOLVING LARGE SCALE DRIVER SCHEDULING PROBLEMS

1. SUPERVISOR: Jesper Larsen and Richard Lusby

2. PROJECT GROUP: Shyam Sundar

3. PROJECT BACKGROUND: The Driver Scheduling Problem involves finding an optimal set of driver duties to cover a timetabled set of trips of vehicle blocks. A vehicle block is an itinerary of a bus between its departure from the depot and its return to the depot. Due to various labor regulations in the public bus transportation industry, a driver may cover only a few consecutive trips of a block before the driver must take a break or be relieved of duty. A duty typically consists of trips from multiple blocks with breaks between them. Optimizing the Driver Scheduling Problems for large cities can take considerable amount of computation time due to the numerous possible combinations of trips from multiple blocks. The optimal solution, however, is only likely to contain certain combinations of the blocks. The structure of the vehicle blocks and the city network could be exploited to predict which blocks are most likely to be combined in the final solution. By predetermining some of the block combinations, the performance of the optimization algorithm in terms of computation time, the convergence to good solutions, and the scalability to large problems, is expected to improve significantly.
4. PROJECT ASSIGNMENT: The aim of the project is to find patterns or rules to identify the combination of blocks in the optimal solution, potentially, using machine learning techniques. It is expected that the identified rule-set and/or patterns will be applied to all real life large scale instances from various Scandinavian bus transit companies. A developed optimization algorithm that solves the Driver Scheduling Problem will be provided for benchmarking purposes.

5. PREREQUISITES: 42114/42115, 42112/42116/42137, good programming skills

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Modelling, algorithm design, literature study

8. REMARKS:

CABINET DESIGN PROBLEM

1. SUPERVISOR: Richard Lusby

2. PROJECT GROUP: Jesper Larsen, Troels Martin Range

3. PROJECT BACKGROUND: The rooms at the Fælles akutmodtagelse (FAM), or emergency ward, at the Hospital of South West Jutland are standardized such that they are (in practice) identical. When a patient enters the FAM they are triaged and then assigned to a room in which the can be treated. Each room has a cabinet containing most of the necessary equipment and materials. These cabinets are also standardized. The cabinet has a number of roll-out shelves which are subdivided into compartments. A number of materials (or a piece of equipment) can be placed in the compartments, but each compartment can only hold one type of material. The compartments are made up of horizontal (left to right) and vertical (front to back) splitters. Consequently all compartments between two horizontal splitters have the same “depth” and all compartments between two vertical splitters have the same “width”. The materials – both number and type – which can be placed in a compartment depend on the size of the compartment. To minimize the time used by the staff to collect the necessary materials for treatments it is desirable to have materials used frequently conjunction on the same shelf. Furthermore, it is desirable if the replenishment of the materials in the cabinets can be synchronized such that several types of material can be replenished at the same time. The problem is then to determine the number and layout of shelves in the cabinets.

4. PROJECT ASSIGNMENT: The aim of this project is to devise a mathematical model and applicable solution approach to determine the optimal dimensioning of the cabinets. Exact and/or heuristic methods are possible. It is anticipated that real-life data will be used to validate the performance of the developed methodology.

5. PREREQUISITES: 42114/42115, 42112/42116/421374, good programming skills

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Modelling, algorithm design
8. REMARKS:

THE CLASSIFICATION YARD BLOCK-TO-TRACK ASSIGNMENT PROBLEM

1. SUPERVISOR: Richard Lusby

3. PROJECT BACKGROUND: Classification yards act as large consolidation points in the freight rail industry. The handling of rail cars at such yards is of paramount importance to their efficiency. At a classification yard arriving (or so-called inbound) trains are disassembled and re-grouped/classified into groups of rail cars sharing the same destination. These groups of rail cars are then combined to form new outbound trains, which subsequently leave the yard. How best to sort the rail cars such that the average dwell time in the yard for all rail cars is minimized is an interesting research question and not trivial to answer. A classification yard consists of a number of parallel tracks (each with a certain length) on which cars can be sorted. Which track to assign each rail car is an important subproblem in the handling of rail cars and is the focus of this project.

4. PROJECT ASSIGNMENT: For this project the student(s) will be required to propose mathematical model(s) for the the block-to-track assignment problem, discussing any advantages and/or disadvantages. In addition, implementation of an exact algorithm or a metaheuristic will be required to validate the model.

7. CHARACTERISTICS OF THE ASSIGNMENT: Model analysis, meta-heuristic implementation. Good programming skills (C++, Java) will be an advantage

8. REMARKS:

THE CARDINALITY CONSTRAINED SHIFT DESIGN PROBLEM WITH MEAL BREAKS

1. SUPERVISOR: Richard Lusby

2. PROJECT GROUP:

3. PROJECT BACKGROUND: The Shift Design Problem is an important optimization problem which arises when scheduling personnel in industries that require continuous operation. Based on the forecast, required staffing levels for a set of time periods, a set of shift types that best covers the demand must be determined. In order to make sure a solution to this problem is easily managed in practice, the number of shift types one is allowed to use is bounded by some upper limit (hence cardinality constrained, and typically the chosen set must be the same on each day of the planning horizon. This is despite the fact that the demand scenarios for each day are not identical. Finally, it is important to identify when meal breaks should be provided to staff members within each of the shift types as this also impacts the quality of the final solution.
4. PROJECT ASSIGNMENT: For this project the student(s) will be required to formulate the cardinality constrained shift design problem with meal break selection as an optimization problem and implement a solution algorithm (exact and/or heuristic) to solve it.

6. GROUP SIZE: 1-2

7. CHARACTERISTICS OF THE ASSIGNMENT: Model analysis, meta-heuristic implementation. Good programming skills (C++, Java) will be an advantage

8. REMARKS:

HEURISTIC APPROACHES TO THE CREW PAIRING PROBLEM

1. SUPERVISOR: Richard Lusby

2. PROJECT GROUP:

3. PROJECT BACKGROUND: The crew pairing problem is one of the most widely studied problems in the field of Operations Research. Arising in the airline industry, it involves determining a set of cost minimal sequences of flights, or so-called pairings, which cover the planned flight schedule and which can be sequential assigned to flight crew. Nowadays, solutions to this problem are found by large-scale integer programming formulations, which are solved using sophisticated decomposition techniques. In this project we would like to investigate the application of metaheuristics to this problem. Ideally, such approaches would provide solutions of similar quality, much faster. This could be attractive for small/mid sized airline companies who do not have a business case for expensive state-of-the-art commercial solvers. Robustness aspects that preserve feasibility of the solution in the presence of disruptions will also be considered.

4. PROJECT ASSIGNMENT: Develop a metaheuristic approach for solving the crew pairing problem for a medium sized airline company. Emphasis should be given to the quality of the solution, the run time required, and its robustness.

5. PREREQUISITES: 42401, 42113/42114, 42112/42116, Good programming skills

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Algorithm design, airline application, literature study

8. REMARKS:

CYCLIC ROSTER CONSTRUCTION

1. SUPERVISOR: Jesper Larsen and Richard Lusby
3. PROJECT BACKGROUND: For large companies efficiently rostering the employees is an extremely important, yet highly challenging problem. The final rosters must usually obey a large set of union rules, consider employee satisfaction, be cyclic in nature, and distribute the workload as evenly as possible across the employees. Staff salaries often constitute the single most expensive resource companies face, and hence optimizing staff utilization can be of significant benefit.

4. PROJECT ASSIGNMENT: This project considers cyclic roster construction for airport security staff. The student must devise an optimization based algorithm for designing rosters (with a cyclicity of 4 weeks) that teams of security officers will work. It is anticipated that the student(s) will devise a column generation procedure to solve this.

5. PREREQUISITES: 42114, 42136 or 42137, good programming skills

6. GROUP SIZE: 1-2 Students

7. CHARACTERISTICS OF THE ASSIGNMENT: Integer Programming, Column Generation, Staff Rostering, Cyclic Rostering

POWER PLANT PREVENTIVE MAINTENANCE SCHEDULING

1. SUPERVISOR: Richard Lusby

3. PROJECT BACKGROUND: Scheduling power plant preventive maintenance is an important problem for any power company. This problem entails determining when each power plant should be taken “offline” to perform the necessary safety inspections and/or running maintenance. Power plants are essential components of the electricity network and any failures have the potential to be very disruptive. Since power plants cannot produce when taken offline, it is essential that their respective maintenance periods are coordinated as efficiently as possible. Furthermore, the demand for power is stochastic in nature and one must minimize the cost associated with maintaining the power plants while satisfying the demand in a variety of scenarios.

4. PROJECT ASSIGNMENT: The aim of this project is to develop an optimization tool for determining this preventive maintenance scheduling problem. It is expected that the student will implement an exact decomposition based algorithm, or an advanced metaheuristic. Data for this problem is available and the solutions obtained with the developed methodology will be compared to the known benchmarks.

5. PREREQUISITES: 42114, 42136 or 42137, good programming skills

6. GROUP SIZE: 1-2 Students

7. CHARACTERISTICS OF THE ASSIGNMENT: Integer Programming, Decomposition, Maintenance, Scheduling
1. SUPERVISOR: Richard Lusby

2. PROJECT GROUP:

3. PROJECT BACKGROUND: The production of a pharmaceutical product can be a complicated process. Typically, it is synthesized in batches from quantities of raw material in such a way that the greatest quantity of the final product, having a prespecified potency, can be manufactured. Complicating issues include the deterioration of the quality of the raw material over time (which ultimately results in a final product with a lower potency), target batch sizes for the final product, and mixing restrictions on the input raw material. Decisions on which raw material to mix, and when and where to produce the final products must be made. The unnecessary wastage of raw material should be avoided; however, supplementary production can be possible in some cases.

4. PROJECT ASSIGNMENT: Devise a mathematical programming model, along with a solution method, to optimize the manufacturing process of a pharmaceutical product. Typically, the objective of the problem is to maximize the quantity of the final product produced; however, here consideration will also be given to the sensitivity of the solution to changes in input parameters. In addition, an extensive review of Operations Research methods applied to similar problems must be completed. For the solution method, exact and/or heuristic methods may be developed.

5. PREREQUISITES: 42114/42115, 42112/42116/421374, good programming skills

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Modelling, algorithm design, literature study

8. REMARKS:

APPLICATIONS OF MACHINE LEARNING IN SOLVING LARGE SCALE DRIVER SCHEDULING PROBLEMS

1. SUPERVISOR: Jesper Larsen and Richard Lusby

2. PROJECT GROUP: Shyam Sundar

3. PROJECT BACKGROUND: The Driver Scheduling Problem involves finding an optimal set of driver duties to cover a timetabled set of trips of vehicle blocks. A vehicle block is an itinerary of a bus between its departure from the depot and its return to the depot. Due to various labor regulations in the public bus transportation industry, a driver may cover only a few consecutive trips of a block before the driver must take a break or be relieved of duty. A duty typically consists of trips from multiple blocks with breaks between them. Optimizing the Driver Scheduling Problems for large cities can take considerable amount of computation time due to the numerous possible combinations of trips from multiple blocks. The optimal solution, however, is only likely to contain certain combinations of the blocks. The structure of the vehicle blocks and the city network could be exploited to predict which blocks are most likely to be combined in the final solution. By predetermining some of the block combinations, the performance of the optimization algorithm in terms of computation time, the convergence to good solutions, and the scalability to large problems, is expected to improve significantly.
4. PROJECT ASSIGNMENT: The aim of the project is to find patterns or rules to identify the combination of blocks in the optimal solution, potentially, using machine learning techniques. It is expected that the identified rule-set and/or patterns will be applied to all real life large scale instances from various Scandinavian bus transit companies. A developed optimization algorithm that solves the Driver Scheduling Problem will be provided for benchmarking purposes.

5. PREREQUISITES: 42114/42115, 42112/42116/42137, good programming skills

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Modelling, algorithm design, literature study

8. REMARKS:

CONSTRANDED QUADRATIC ASSIGNMENT FOR FACILITY LAYOUT DECISION

1. SUPERVISOR: Richard Lusby

2. PROJECT GROUP: Jesper Larsen, Troels Martin Range

3. PROJECT BACKGROUND: A recurrent issue when making changes in a hospital is where different functions have to be positioned such that the total distance traveled is minimized. A number of positions are typically available and functions can be placed at these positions. The hospital of South West Jutland is focusing on minimizing the nonproductive travel distance of employees (which corresponds to walking between functions). A number of workshops is being held where (among other aspects) repositioning of functions is being discussed. In practice, a point observation (following one or more employees on a given day) of the number of trips between functions is conducted and the repositioning is based on this observation. The distance between positions can be measured in meters or number of steps. The problem under consideration corresponds to a quadratic assignment problem where potential side constraints may be added e.g., the distance between certain facilities should not be greater than a given amount or if one function is in a specific position then another cannot be close by.

4. PROJECT ASSIGNMENT: The focus of this project is to formulate and solve the above problem using Operations Research techniques, ultimately providing a tool that can possibly benchmark proposed solutions.

5. PREREQUISITES: 42114/42115, 42112/42116/421374, good programming skills

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Modelling, algorithm design

8. REMARKS:

ROUTING IN BLOOD SAMPLE RETRIEVAL
1. SUPERVISOR: Richard Lusby

2. PROJECT GROUP: Troels Martin Range

3. PROJECT BACKGROUND: Taking blood samples for analysis is typically conducted at the location of the hospital. However, some patients are too weak to travel from their homes to the hospital, and the hospital of South West Jutland is experimenting with taking the blood samples in the homes of the patients. As a consequence, a nurse or a bioanalyst has to visit the patient to take the sample. These visits (for non-emergency patients) have to be booked in the hospital’s appointment system called BookPlan which is developed by CapGemini. Hence the problem is to identify a sequence of visits to patients homes such that as many patients can be visited within as short a timeframe as possible. This constitutes a classical time constrained routing problem, and an investigation of possible solutions for this is the aim of this project.

4. PROJECT ASSIGNMENT: This constitutes a classical time constrained routing problem, and an investigation of possible solutions for this is the aim of this project.

<table>
<thead>
<tr>
<th>CONstrained Quadratic Assignment For Facility Layout Decision</th>
</tr>
</thead>
</table>

1. SUPERVISOR: Richard Lusby

2. PROJECT GROUP: Jesper Larsen, Troels Martin Range

3. PROJECT BACKGROUND: A recurrent issue when making changes in a hospital is where different functions have to be positioned such that the total distance traveled is minimized. A number of positions are typically available and functions can be placed at these positions. The hospital of South West Jutland is focusing on minimizing the nonproductive travel distance of employees (which corresponds to walking between functions). A number of workshops is being held where (among other aspects) repositioning of functions is being discussed. In practice, a point observation (following one or more employees on a given day) of the number of trips between functions is conducted and the repositioning is based on this observation. The distance between positions can be measured in meters or number of steps. The problem under consideration corresponds to a quadratic assignment problem where potential side constraints may be added e.g., the distance between certain facilities should not be greater than a given amount or if one function is in a specific position then another cannot be close by.

4. PROJECT ASSIGNMENT: The focus of this project is to formulate and solve the above problem using Operations Research techniques, ultimately providing a tool that can possibly benchmark proposed solutions.

5. PREREQUISITES: 42114/42115, 42112/42116/421374, good programming skills

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Modelling, algorithm design

8. REMARKS: 42114/42115, 42112/42116/421374, good programming skills
6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Modelling, algorithm design

8. REMARKS:

OPTIMAL AIRCRAFT ROTATION PLANNING, WITH MAINTENANCE REQUIREMENTS USING COLUMN GENERATION

1. SUPERVISOR: Richard Lusby

2. PROJECT GROUP: Bo Vaaben

3. PROJECT BACKGROUND: Given a set of flights to be flown and a fleet of aircraft (possibly of different types), the aircraft rotation problem involves determining a specific route (i.e., sequence of flights) to be flown by each aircraft in the fleet. Several practical constraints must be respected when doing this. These include, but are not limited to:

1. Passenger capacity
2. Fuel efficiency
3. Preferred aircraft equipment for specific flights

In addition to these, maintenance requirements constitute an important set of restrictions that influence the routes that will be ultimately flown. Aircraft undergoing maintenance cannot be used, and all aircraft must periodically (or once a certain number of e.g., take-offs and landings has been reached) receive maintenance. Consideration on how best to include these restrictions to generate maintenance feasible routes is the focus of this project.

4. PROJECT ASSIGNMENT: The aim of this project is to develop a column generation based approach to produce maintenance feasible aircraft rotations.

5. PREREQUISITES: 42114/42115, 42112/42116/421374, good programming skills

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Modelling, algorithm design

8. REMARKS:

OPTIMAL FLIGHT TRAJECTORY SELECTION IN CONGESTED AIRSPACE

1. SUPERVISOR: Richard Lusby

2. PROJECT GROUP: Bo Vaaben

3. PROJECT BACKGROUND: Determining an optimal flight trajectory from one airport to another must take into account a number of different aspects, one of which is congested airspace. This project will focus on how congested airspace influences the optimal flight trajectory.
4. PROJECT ASSIGNMENT: The project will look into the two main aspects:

1. Research methods for applying congested areas to a trajectory optimization model.
2. Given a specific combination of airspace congestion zones and expected delays through these zones, the student should provide a model or a method which can find the optimal set of flight trajectories for a set of airline flights.

5. PREREQUISITES: 42114/42115, 42112/42116/421374, good programming skills

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Modelling, algorithm design

8. REMARKS:
Projects with Stefan Røpke as supervisor
1. **SUPERVISOR:** Stefan Røpke

3. **PROJECT BACKGROUND:** Many of the goods that we buy in shops have been produced far from Denmark and are transported here using container ships. Container ships travel along fixed routes and several ships share the same routes such that the ports on the routes receive a weekly visit by a container ship. The routes combined constitute a transportation network that allow cargoes to be shipped between two ports that are not connected by any route. This is possible by transshipping cargoes between different routes one or more times during the voyage.

The set of routes that a container liner company chooses to operate has a large impact on its business: The network decides the cost of operations; it decides which cargoes that can be transported as well as the level of service provided to the customers (shipping times).

4. **PROJECT ASSIGNMENT:** Design and implement a solution method for the liner shipping network design problem. Test the approach on instances from LinerLib data set.

5. **PREREQUISITES:** Some programming experience in e.g. C, C#, C++, Java or Julia. At least one of the courses 42114 Integer programming, 42137 Optimization using metaheuristics, 42115 Network Optimization, 42132 Large Scale Optimization using decomposition.

6. **GROUP SIZE:** 1-2

7. **CHARACTERISTICS OF THE ASSIGNMENT:** Maritime optimization, integer programming, transportation

8. **REMARKS:** David Pisinger offers a similar project.
1. **SUPERVISOR:** Stefan Røpke

2. **PROJECT BACKGROUND:** Producing a timetable for the regional and intercity trains in Denmark is a difficult and time consuming task. Today the timetable is planned in a (mostly) manual way. For that reason it is promising to explore if operations research algorithms can be used to assist in the construction of time tables. The project is carried out in collaboration with DSB and should aim at developing a prototype that takes real-life constraints into account.

4. **PROJECT ASSIGNMENT:** The project can focus on the time tabling project alone or components of other train planning problems can be included, for example decisions related to stopping patterns for trains or scheduling of rolling stock. Data is already available and it is possible to build on existing models and algorithms or to start from scratch.

5. **PREREQUISITES:** Some programming experience, experience with either integer programming or experience with metaheuristics is highly recommended.

6. **GROUP SIZE:** 1-2 students

7. **CHARACTERISTICS OF THE ASSIGNMENT:** Trains, time tabling, integer programming

1. **SUPERVISOR:** Stefan Røpke and Jens Vinther Clausen and/or Richard Lusby

2. **PROJECT BACKGROUND:** At DTU we are currently doing research on how to automatize Dantzig-Wolfe decomposition. A goal of the research project is to develop methods that solves mixed integer programming programs using Dantzig-Wolfe decomposition and column generation entirely without any user involvement. In the long run, such methods could be embedded into solvers like CPLEX or Gurobi and improve their performance on certain problem classes. We would like to invite MSc students to collaborate on this project. The research is on the forefront and a successful master’s thesis could potentially lead to a journal paper.

4. **PROJECT ASSIGNMENT:** Many projects can be envisioned within the Automatic Dantzig Wolfe Decomposition research project. Some examples are:

 - Test the developed methods on new problem classes. Is it possible to find new classes of problems where the approach has potential?
 - A very time consuming part of the algorithm is to solve the sub-problems during column generation. Is it possible to devise fast heuristic to speed up the sub-problem solve time?
 - At the moment the algorithm is very generic, but it is possible to specialize the algorithm to a specific problem classes. It could be interesting to work on a specialized version of the algorithm for solving important problem types.
• Often it is possible to aggregate identical sub-problems when applying Dantzig-Wolfe decomposition. This is not currently supported by the algorithm and would be a valuable addition.

5. PREREQUISITES: Programming experience, experience with column generation and Dantzig-Wolfe decomposition, for example through the courses 42136 Large Scale Optimization using Decomposition or 42116 Implementing OR Solution Methods.

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Dantzig-Wolfe decomposition, column generation, integer programming

Machine learning and metaheuristics

1. SUPERVISOR: Stefan Røpke

2. PROJECT BACKGROUND: Machine learning is a subject that has become extremely popular in the last decade. It is interesting to examine if machine learning techniques can be used to improve the performance of metaheuristics. Any metaheuristic can be the focus of the study, but adaptive large neighborhood search is perhaps especially well-suited given DTU’s expertise on the metaheuristic.

4. PROJECT ASSIGNMENT: Investigate if one or more components of a particular metaheuristic can be improved using machine learning techniques. It could for example be interesting to investigate if the adaptive tuning of destroy/repair methods embedded in Adaptive large neighborhood search could be done more intelligently using machine learning techniques. It could also be interesting to investigate if the acceptance criterion that are part of many heuristic can be chosen in an online way, taking information about the features of the current data-set into account.

5. PREREQUISITES: Programming experience. The course 42137, Optimization using metaheuristics could be useful and so could courses on machine learning algorithms.

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Metaheuristics, machine learning algorithms
1. SUPERVISOR: Stefan Røpke / Jesper Larsen

2. PROJECT BACKGROUND: Burd Delivery was founded in 2014 and participated in the first season of the Danish TV-show ‘Løvens Hule’, where it got two investors on board under the name ‘Trunkbird’. Currently, the company only delivers to people’s homes; but expansions are in the pipeline, and it is expected that deliveries to pick-up points will be introduced before Q3 2019; and day-time deliveries will be introduced by the end of 2019.

Burd Delivery receives data on deliveries (addresses) continuously during the day; and with a cut-off around 16.45. No later than 16.55 do all final routes need to be in place, as the parcels received need to be sorted before the drivers arrive at 17.45. The drivers leave at 18.00, and are allowed to deliver parcels until 21.30. The drivers’ routes are always set so that they end as close to their homes as possible.

Planning of the delivery routes is no easy task as there are countless of factors to take into account.

4. PROJECT ASSIGNMENT: Investigate solution methods for route and crew planning at Burd Delivery. The planning problem is complex and part of the assignment is to boil the planning problem down to something that is manageable within the time for a MSc project while still being interesting for Burd delivery.

5. PREREQUISITES: Programming experience. The course 42137, Optimization using metaheuristics could be useful and so could courses on machine learning algorithms since Burd delivery envisions that machine learning can be used to estimate various parameters describing, for example, the time a particular driver is going to spend on a particular task.

6. GROUP SIZE: 1-2 students

7. CHARACTERISTICS OF THE ASSIGNMENT: Metaheuristics, parcel delivery, vehicle routing problems

HEURISTICS FOR MIXED INTEGER CONIC PROBLEMS

1. SUPERVISOR: Stefan Røpke

3. PROJECT BACKGROUND: Even though an mixed-integer optimization problem is solved with a branch & bound algorithm then a heuristic for finding good feasible solutions is useful. An interesting project is to generalize the heuristics from linear to conic case. In particular the efficient generalization of the feasibility pump heuristic would be interesting. The project is to be carried out in collaboration with MOSEK ApS.

4. PROJECT ASSIGNMENT: Get to know second-order cone programming and some of the standard heuristics for mixed integer linear programming. Develop and implement a heuristic for mixed integer conic problems.

5. PREREQUISITES: Programming skills. Some flair for mathematics.

6. GROUP SIZE: 1-2

8. REMARKS: Relevant literature

- Fischetti, Glover, Lodi, The feasibility pump, Mathematical programming 104 (2005), 91-104

SOLVING REAL LIFE VEHICLE ROUTING PROBLEMS

1. SUPERVISOR: Stefan Røpke

3. PROJECT BACKGROUND: Real life vehicle routing problems typically contains more complicated constraints or objective functions compared to the standard problems studied in the literature. In this project we will contact the company AMCS who specializes in vehicle routing software and the exact topic of the project will be decided by the problems the company currently are working on.

4. PROJECT ASSIGNMENT: Develop heuristics or exact methods for solving real life vehicle routing problems.

5. PREREQUISITES: Mandatory:

 - Programming experience.

 Nice to have, but not mandatory:

 - Integer programming (42114).
 - Optimization using metaheuristics (42137)
 - Vehicle Routing and Distribution Planning (13442)

6. GROUP SIZE: 1-2

COMPONENTS OF A MIXED INTEGER LINEAR PROGRAMMING SOLVER

1. **SUPERVISOR:** Stefan Røpke

3. **PROJECT BACKGROUND:** Writing a mixed integer linear programming solver that can compete with state of the art solvers require many software components like separation routines for known cutting planes, heuristics for finding feasible solutions, presolvers for simplifying the problem and methods for selecting which variables to branch on, to name a few. Writing just one of these components can be an interesting challenge in itself.

4. **PROJECT ASSIGNMENT:** The purpose of this project is to work on a selected component and test the impact of that component. It could for example be implementing a new separation routine for cutting planes or a new heuristic for finding feasible solutions. The project is to be carried out in collaboration with MOSEK ApS.

5. **PREREQUISITES:** Programming skills (C or C++). Good knowledge of integer programming.

6. **GROUP SIZE:** 1-2

7. **CHARACTERISTICS OF THE ASSIGNMENT:** Integer programming, exact methods, heuristics, cutting planes.

EVALUATING SIMPLE AND FAST HEURISTICS FOR THE CAPACITATED VEHICLE ROUTING PROBLEM.

1. **SUPERVISOR:** Stefan Røpke

3. **PROJECT BACKGROUND:** The capacitated vehicle routing problem (CVRP) has been studied for more than 50 years and many simple and fast heuristics for solving the problem have been proposed over the years. Researchers and practitioners have a good idea of the strengths and weaknesses of the main types of heuristics but surprisingly there is no comprehensive test of a wide range of the heuristics on a large sample of CVRP instances. A very good comparison could be published in an academic journal.

4. **PROJECT ASSIGNMENT:** Some of the simple and fast should be implemented. Focus should also be on designing/selecting test instances and performing a fair comparison of the heuristics.

5. **PREREQUISITES:** Mandatory:
 - Programming experience.

 Nice to have, but not mandatory:
 - Integer programming (42114).
 - Optimization using metaheuristics (42137)
 - Vehicle Routing and Distribution Planning (13442)
1. SUPERVISOR: Stefan Røpke

3. PROJECT BACKGROUND: Classical vehicle routing problems like the capacitated vehicle routing problem (CVRP) or the vehicle routing problem with time windows (VRPTW) assume that all data are known in advance. This assumption is obviously not always satisfied in practice. It is therefore interesting to study variants of the vehicle routing problem where part of the input data is given as random variables with known distribution, commonly known as stochastic vehicle routing problems. Examples are the vehicle routing problem with stochastic demands or the vehicle routing problem with stochastic travel times.

4. PROJECT ASSIGNMENT: Select a stochastic vehicle routing problem and design/implement a solution method for it.

5. PREREQUISITES: Programming skills. Relevant courses (none of them are a strict requirement): 42114 Integer Programming. 42115 Network Optimization. 42137 Optimization using metaheuristics. 13442 Vehicle Routing and Distribution Planning

6. GROUP SIZE: 1-2

8. REMARKS: Relevant literature (one example):

Projects with Nina Lange as supervisor
Risk adjustment of alternative risk premium strategies in the commodity space

1. SUPERVISORS: Nina Lange

2. PROJECT GROUP: Qblue Capital

3. PROJECT BACKGROUND: Investment professionals are today using a risk budget when allocating capital to strategies/portfolios. In the commodity space there has not been a tradition to work with risk budgets but instead an allocation based on a fixed number of contracts.

4. PROJECT ASSIGNMENT: The idea in this topic is to look at traditional risk measurement methods to estimate risk and target a risk budget for a strategy or portfolio in the commodity space. Models could include GARCH models with seasonal component or even stochastic volatility models.

5. PREREQUISITES: Core courses in Financial Engineering: 42104 Introduction to Financial Engineering and one or more of the following courses: 42123 Optimization in Finance, 42106 Financial Risk Management and 42105 Financial Products. A solid background in probability theory, statistics, time series and/or economics is a plus. The project contains programming in Python, R or Matlab.

6. GROUP SIZE: 1 or 2 persons.

7. CHARACTERISTICS OF THE ASSIGNMENT: Risk Management, Pricing, Financial Derivatives, Commodities

Modeling seasonality in risk measuring for commodities

1. SUPERVISORS: Nina Lange

2. PROJECT GROUP: Qblue Capital

3. PROJECT BACKGROUND: One of the properties which makes commodity a special asset class is the strong seasonal pattern in some commodities. The seasonality can be driven by unknown demand and hard to storage, natural gas in winter time, or unknown supply, typical commodities in agriculture. This seasonality pattern makes it hard to predict risk in commodity future contracts at a given fixed time point.

4. PROJECT ASSIGNMENT: This project will look at methods/models which incorporate the seasonality component when estimating risk.

5. PREREQUISITES: Core courses in Financial Engineering: 42104 Introduction to Financial Engineering and one or more of the following courses: 42123 Optimization in Finance, 42106 Financial Risk Management and 42105 Financial Products. A solid background in probability theory, statistics, time series and/or economics is a plus. The project contains programming in Python, R or Matlab.
6. GROUP SIZE: 1 or 2 persons.

7. CHARACTERISTICS OF THE ASSIGNMENT: Risk Management, Pricing, Financial Derivatives, Commodities

<table>
<thead>
<tr>
<th>Portfolio construction</th>
</tr>
</thead>
</table>

1. SUPERVISORS: Nina Lange

2. PROJECT GROUP: Qblue Capital

3. PROJECT BACKGROUND: Today mean variance is often the starting point in academia when teaching about optimal portfolio allocation. In practice mean variance is rarely used and more risk based allocation methods such as minimum variance, maximum diversification and risk parity are often implemented.

4. PROJECT ASSIGNMENT: This project will describe the different methods and empirical test the benefits/draws of the different allocation methods.

5. PREREQUISITES: Core courses in Financial Engineering: 42104 Introduction to Financial Engineering and one or more of the following courses: 42123 Optimization in Finance, 42106 Financial Risk Management and 42105 Financial Products. A solid background in probability theory, statistics, time series and/or economics is a plus. The project contains programming in Python, R or Matlab.

6. GROUP SIZE: 1 or 2 persons.

7. CHARACTERISTICS OF THE ASSIGNMENT: Mean-variance, portfolio construction, risk, asset allocation

<table>
<thead>
<tr>
<th>Hedging of volume risk</th>
</tr>
</thead>
</table>

1. SUPERVISORS: Nina Lange

3. PROJECT BACKGROUND: An electricity company is often obligated to deliver any demanded amount of electricity at a fixed price. The positive correlation between prices and quantity demanded (and negative correlation between renewable energy production and prices) leads to large fluctuations in earnings.

4. PROJECT ASSIGNMENT: Using empirical data to understand the risk and propose risk mitigating strategies, either using financial derivatives or by clever contract design.

5. PREREQUISITES: Core courses in Financial Engineering: 42104 Introduction to Financial Engineering and one or more of the following courses: 42123 Optimization in Finance, 42106 Financial Risk Management and 42105 Financial Products. A solid background in probability theory, statistics, time series and/or economics is a plus. The project contains programming in R or Matlab.

6. GROUP SIZE: 1 or 2 persons.

7. CHARACTERISTICS OF THE ASSIGNMENT: Risk Management, Pricing, Financial Derivatives, Commodities
Projects with Thomas Stidsen as supervisor

OPTIMAL DECISION TREES

1. SUPERVISOR: Thomas Stidsen

3. PROJECT BACKGROUND: Decision trees is a classical approach to clustering, which has been used for many practical problems for decades. Recently, Prof. Dimitris Bertsimas has suggested that this approach can be improved. In this project we will attempt to implement a new approach where decision trees are created using MIP models and optimal decision trees are created.

4. PROJECT ASSIGNMENT: Use MIP models to create optimal decision trees

5. PREREQUISITES: Introduction to Operations Research (42101), Mathematical Programming with Modelling Software (42112). Some knowledge of statistics is required.

LEAN-COACH PLANNING

1. SUPERVISOR: Thomas Stidsen, Line Reinhardt, Anders Andersen

3. PROJECT BACKGROUND: In the region of Sealand, Lean-coaches have sessions in many different locations at different times. Given the preferences of the Lean-coaches, regarding time, place, transport form and type of blackboard, create the best possible plan for the coaches.

4. PROJECT ASSIGNMENT: This is a classical OR project, where a number of tasks are scheduled to maximize value. MIP models or metaheuristics should be used.

5. PREREQUISITES: Introduction to Operations Research (42101), Mathematical Programming with Modelling Software (42112), Optimization using metaheuristics (42137)

7. CHARACTERISTICS OF THE ASSIGNMENT: The problem will be of direct benefit for the Lean-coaches today.

8. REMARKS:
SEPARATE TRACKS IN THE ER

1. SUPERVISOR: Thomas Stidsen, Line Reinhardt, Anders Andersen

3. PROJECT BACKGROUND: In the typical ER units, doctors will (naturally) prioritize critically wounded people. This makes sense, but it also means that people with less than lifethreatening problems, e.g. a broken leg, can wait for hours. Maybe it is possible to make a fast track treatment for simple cases, a little like fast track payment in supermarkets.

4. PROJECT ASSIGNMENT: The project should model the operation of an ER with real data from e.g. the hospital in Slagelse. Using simulation tools it should be possible to evaluate the possible benefits of fast track treatment.

5. PREREQUISITES: Introduction to Operations Research (42101), Simulation in Production og Services (42413)

7. CHARACTERISTICS OF THE ASSIGNMENT: If fast tracks can be demonstrated to be efficient, it may lead to better ER’s in Denmark.

8. REMARKS:

LINEAR REGRESSION DONE RIGHT

1. SUPERVISOR: Thomas Stidsen

3. PROJECT BACKGROUND: The classical approach to Linear Regression usually involves the Lasso algorithm. Recently, Prof. Dimitris Bertsimas has suggested that this approach can be improved. In this project we will attempt to implement his approach and compare it to the Lasso approach. This should lead to a quantification of the two approaches.

4. PROJECT ASSIGNMENT: Solve Linear Regression using Quadratic MIP.

5. PREREQUISITES: Introduction to Operations Research (42101), Mathematical Programming with Modelling Software (42112). Programming experience is a big plus and so is knowledge of the Lasso algorithm.

MEASURING HARDNESS OF MIP MODELS

1. SUPERVISOR: Thomas Stidsen

3. PROJECT BACKGROUND: Mixed Integer Programming (MIP) models are very very important for solving Operations Research problems. They can however be hard to solve, both in theory and practice. But which features makes a MIP models hard?

4. PROJECT ASSIGNMENT: Given a set of MIP models, the idea is to generate a number of measures, which we think could be a measure of the hardness of the models. Afterwards, different statistical instruments can be used to find the best combination, to predict how hard the problem is to solve.

5. PREREQUISITES: Introduction to Operations Research (42101), Integer Programming (42114) Programming experience is a must.

7. CHARACTERISTICS OF THE ASSIGNMENT: The project is novel and a good project could be of large value to the OR society.

8. REMARKS:
1. **SUPERVISOR:** Thomas Stidsen & Peter Jacobsen

3. **PROJECT BACKGROUND:** The municipality of Albertslund has a number of homecare nurses, who everyday visit citizens. Planning the workday of these nurses is the topic here. The project is complicated by having many different types of homecare visits, a lot of special requirements for the citizens etc. Today these plans are done manually.

4. **PROJECT ASSIGNMENT:** The project assignment is in 3 steps:

 1. Describe the current situation
 2. Model the problem
 3. Optimize the problem

 The student will have a lot of freedom to choose exactly what aspects of the problem to study.

5. **PREREQUISITES:** Introduction to Operations Research (42101), Optimization using metaheuristics (42112) Programming experience is beneficial

6. **GROUP SIZE:** 1-2 persons.

8. **REMARKS:**
Projects with David Pisinger as supervisor

| Optimizing labor ordering and berth scheduling for liner vessels |

1. **SUPERVISOR:** David Pisinger, David F. Koza

2. **PROJECT BACKGROUND:** When container vessels berth at a port to load or unload containers, the cargo carrier needs to book cranes and gangs (that operate the cranes) in advance. The more cranes/gangs are booked, the higher is the productivity (number of moved containers per hour) and the earlier the vessel can leave the port again. Gangs work in shifts that may have different costs depending on the time or weekday. Many other restrictions, as e.g. limited berth availability windows or tidal restrictions, may apply. The time a vessel spends at a port also affects the subsequent sailings and port calls; the faster a vessel finishes operations at a port, the more time is left to sail to the next port and to finish operations at the next port and vice versa. Due to these interdependencies, the planning problem becomes quite complex. The project is carried out together with Maersk Line planners that face these problems on a weekly basis.

3. **PROJECT ASSIGNMENT:** Describe the resulting vessel berth scheduling and gang optimization problem and examine related literature. Formulate and implement mathematical models to solve the problem and possible extensions. Generate a set of good solutions that can be presented to planners. Analyse the results and derive decision rules to support planners.

 Data for actual gang optimization problems will be provided by Maersk Line. Good results may therefore have an actual impact.

4. **PREREQUISITES:** Motivation to work on and learn about a practical problem; experience with mathematical modelling and associated languages (e.g. CPLEX or Gurobi); fluency in English (as communication with Maersk planners will be in English); programming skills are of advantage.

5. **GROUP SIZE:** 1-2

6. **CHARACTERISTICS OF THE ASSIGNMENT:** Liner shipping, scheduling, mathematical modeling, applied optimization
1. **SUPERVISOR:** David Pisinger, David F. Koza

2. **PROJECT BACKGROUND:** The liner shipping network design problem is a very hard combinatorial optimization problem and subject of ongoing research. The challenge is to construct a network of liner services that operate on cyclic routes, and to route containers through this network such that revenues minus cost are maximized. The majority of solution approaches, including the most promising ones, require to solve a very large number of cargo routing problems as intermediate and reoccurring steps. More efficient algorithms for the cargo routing problem therefore have the potential to significantly improve the performance of network design algorithms as well.

The cargo routing problem consists of finding a path from an origin port to a destination port through a very large network, while respecting constraints as e.g. transit time limits. The cargo routing problem is a shortest path problem with resource constraints (SPPRC).

The goal of this thesis is to investigate how the existing algorithms can be improved, or to develop new approaches. Possible directions of research include the implementation and testing of alternative algorithms (e.g. the A*-algorithm, heuristics) or improved preprocessing techniques.

3. **PROJECT ASSIGNMENT:** Implement and test different exact or heuristic algorithms and/or preprocessing techniques for the cargo routing problem. Developed algorithms can be tested and evaluated within a solution framework for liner shipping network design, written in C++ and developed at the OR group.

4. **PREREQUISITES:** Interest in algorithms and their implementation; good programming skills, ideally C++ (as our framework and existing methods are coded in C++); Mandatory courses: 42115 Network Optimization

5. **GROUP SIZE:** 1-2

6. **CHARACTERISTICS OF THE ASSIGNMENT:** Cargo routing, resource constrained shortest path problem, liner shipping network design, graph based algorithms
Algorithms for the design of liner services in liner shipping networks

1. SUPERVISOR: David Pisinger, David F. Koza

2. PROJECT BACKGROUND: The liner shipping network design problem is a very hard combinatorial optimization problem and subject of ongoing research. The challenge is to construct a network of liner services that operate on cyclic routes, and to route containers through this network such that revenues minus costs are maximized. The majority of solution approaches imposes only very few restrictions on the design of liner shipping services; in practice, however, network planners have to consider various factors and trade-offs when designing a liner service. Network planners would, for example, try to limit the duration of a service, as shorter services can be adjusted more easily and are easier to cope with in case of delays or disruptions. Another example is the rotation design: in practice, services that call a particular port more than twice are very rare.

Imposing additional restrictions on the service design makes the problem of generating liner services more difficult. Early in the project we will discuss practically relevant restrictions with Maersk planners. The goals are to investigate how these can be modeled, to develop tailored solution algorithms to solve the service design problem efficiently, and to analyze how those additional restrictions affect network design and cost.

3. PROJECT ASSIGNMENT: Construct a mathematical model for the liner service design problem with additional side constraints. Develop and implement heuristic or exact solution algorithms (e.g., dynamic programming based algorithms) to solve the problem. You will have access to a solution framework for liner shipping network design, written in C++ and developed at the OR group, and we would aim at embedding and testing your developed methods within this framework.

4. PREREQUISITES: Good programming skills, ideally C++ (as our framework and existing methods are coded in C++); Mandatory courses: ‘42115 Network Optimization’. Course ‘42885 Maritime Logistics’ and other OR courses are of advantage.

5. GROUP SIZE: 1-2

6. CHARACTERISTICS OF THE ASSIGNMENT: Liner shipping network design, graph based algorithms